The organization and developmental establishment of cortical interneuron presynaptic circuits

Author:

Pouchelon Gabrielle,Bollmann Yannick,Fisher Elaine,Agba Chimuanya K,Xu Qing,Ritola Kimberly D,Mirow Andrea MC,Kim Sehyun,Cossart Rosa,Fishell GordORCID

Abstract

Sensory and cognitive functions are processed in discrete cortical areas and depend upon the integration of long range cortical and subcortical inputs. PV and SST inhibitory interneurons (cINs) gate these inputs and failure to do so properly is implicated in many neurodevelopmental disorders. The logic by which these interneuron populations are integrated into cortical circuits and how these vary across sensory versus associative cortical areas is unknown. To answer this question, we began by surveying the breadth of afferents impinging upon PV and SST cINs within distinct cortical areas. We found that presynaptic inputs to both cIN populations are similar and primarily dictated by their areal location. By contrast, the timing of when they receive these afferents is cell-type specific. In sensory regions, both SST and PV cINs initially receive thalamocortical first order inputs. While by adulthood PV cINs remain heavily skewed towards first order inputs, SST cINs receive an equal balance of first and higher order thalamic afferents. Remarkably, while perturbations to sensory experience affect PV cIN thalamocortical connectivity, SST cIN connectivity is disrupted in a model of fragile X syndrome (Fmr1 loss of function) but not a model of ASD (Shank3B loss of function). Altogether, these data provide a comprehensive map of cIN afferents within different functional cortical areas and reveal the region-specific logic by which PV and SST cIN circuits are established.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3