Author:
Rashtchian A,Thornton C G,Heidecker G
Abstract
A novel method for site-directed mutagenesis of DNA sequences based on the use of the PCR is described. The method uses two oligonucleotide primers that contain the desired sequence change and overlap at their 5' ends. In addition, the thymine residues in the overlap region have been substituted with deoxyuracil. Amplification of the template plasmid by PCR results in incorporation of the primers and the desired mutation into the PCR product. Excision of the deoxyuracil residues in the PCR products by uracil DNA glycosylase (UDG) destablizes base-pairing at the ends of DNA molecules and thus generates 3' protruding ends in the opposite strand. Due to overlapping nature of the primers, the resulting 3' protruding ends are complementary and can anneal rapidly after treatment with UDG. When the entire plasmid is amplified, a linear mutant PCR product is generated that circularizes after treatment with UDG. Circularized molecules can then be transformed into competent cells without ligation, generating transformants with the mutant genotype. Alternatively, the gene of interest is amplified in two segments using overlapping mutant primers and cloned in the desired orientation into pAMP1 by UDG cloning. Application of this method to site-specific mutagenesis of the lacZ alpha gene and the human c-raf oncogene was demonstrated. The accuracy of the mutations was confirmed by nucleotide sequence analysis as well as phenotypic assays. The method is rapid, highly efficient (> 99%), and applicable to genes cloned in any vector as well as to genomic DNA or RNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics(clinical),Genetics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献