Cytoskeletal organization in isolated plant cells under geometry control

Author:

Durand-Smet P.,Spelman Tamsin A.,Meyerowitz E. M.ORCID,Jönsson H.ORCID

Abstract

AbstractSpecific cell and tissue form is essential to support many biological functions of living organisms. During development, the creation of different shapes at the cellular and tissue level fundamentally requires the integration of genetic, biochemical and physical inputs.It is well established that the cortical microtubule network plays a key role in the morphogenesis of the plant cell wall by guiding the organisation of new cell wall material. Moreover, it has been suggested that light or mechanical stresses can orient the microtubules thereby controlling wall architecture and plant cell shape. The cytoskeleton is thus a major determinant of plant cell shape. What is less clear is how cell shape in turn influences cytoskeletal organization.Recent in vitro experiments and numerical simulations predicted that a geometry-based rule is sufficient to explain some of the microtubule organization observed in cells. Due to their high flexural rigidity and persistence length of the order of a few millimeters, MTs are rigid over cellular dimensions and are thus expected to align along their long axis if constrained in specific geometries. This hypothesis remains to be tested in cellulo.Here we present an experimental approach to explore the relative contribution of geometry to the final organization of actin and microtubule cytoskeletons in single plant cells. We show that, in cells constrained in rectangular shapes, the cytoskeleton align along the long axis of the cells. By studying actin and microtubules in cells with the same system we show that while actin organisation requires microtubules to be present to align the converse is not the case. A model of self organizing microtubules in 3D predicts that severing of microtubules is an important parameter controlling the anisotropy of the microtubule network. We experimentally confirmed the model predictions by analysing the response to shape change in plant cells with altered microtubule severing dynamics. This work is a first step towards assessing quantitatively how cell geometry contributes to the control of cytoskeletal organization in living plant cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3