Abstract
AbstractDissection of regulatory network that control wood structure is highly challenging in functional genomics. Nevertheless, due to the availability of genomic, transcriptomic and proteomic sequences, a large amount of information is available for use in achieving this goal. MicroRNAs, which compose a class of small non-coding RNA molecules that inhibit protein translation by targeting mRNA cleavage sites and thus regulate a wide variety of developmental and physiological processes in plants, are important parts of this regulatory network. These findings and the availability of sequence information have made it possible to carry out an in silico analysis to predict and annotate miRNAs and their target genes associated with an important factor affecting wood rigidity, microfibril angle (MFA), throughout the Populus trichocarpa Hook. genome. Our computational approach revealed miRNAs and their targets via ESTs, sequences putatively associated with microfibril angle. In total, 250 miRNAs were identified as RNA molecules with roles in the silencing and post-transcriptional regulation of the expression of nine genes. We found SHY2, IAA4 (ATAUX2–11), BZIP60, AP2, MYB15, ABI3, MYB17, LAF1 and MYB28 as important nodes in a network with possible role in MFA determination. Other co-expressed genes putatively involved in this regulatory system were also identified by construction of a co-expression network. The candidate genes from this study may help unravel the regulatory networks putatively linked to microfibril angle.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Plant Science,Genetics,Molecular Biology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics