In silico analysis of key regulatory networks related to microfibril angle in Populus trichocarpa Hook.

Author:

Köbölkuti Zoltán AttilaORCID,Benke AttilaORCID,Cseke KláraORCID,Borovics AttilaORCID,Tóth Endre GyörgyORCID

Abstract

AbstractDissection of regulatory network that control wood structure is highly challenging in functional genomics. Nevertheless, due to the availability of genomic, transcriptomic and proteomic sequences, a large amount of information is available for use in achieving this goal. MicroRNAs, which compose a class of small non-coding RNA molecules that inhibit protein translation by targeting mRNA cleavage sites and thus regulate a wide variety of developmental and physiological processes in plants, are important parts of this regulatory network. These findings and the availability of sequence information have made it possible to carry out an in silico analysis to predict and annotate miRNAs and their target genes associated with an important factor affecting wood rigidity, microfibril angle (MFA), throughout the Populus trichocarpa Hook. genome. Our computational approach revealed miRNAs and their targets via ESTs, sequences putatively associated with microfibril angle. In total, 250 miRNAs were identified as RNA molecules with roles in the silencing and post-transcriptional regulation of the expression of nine genes. We found SHY2, IAA4 (ATAUX2–11), BZIP60, AP2, MYB15, ABI3, MYB17, LAF1 and MYB28 as important nodes in a network with possible role in MFA determination. Other co-expressed genes putatively involved in this regulatory system were also identified by construction of a co-expression network. The candidate genes from this study may help unravel the regulatory networks putatively linked to microfibril angle.

Funder

University of Sopron

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Genetics,Molecular Biology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3