DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site.

Author:

Czerny T,Schaffner G,Busslinger M

Abstract

Previous DNA-binding studies indicated that an intact paired domain is required for interaction of the transcription factor BSAP (Pax-5) with DNA. We have now identified a subset of BSAP recognition sequences that also bind to a truncated BSAP peptide lacking 36 carboxy-terminal amino acids of the paired domain. Sequence comparison of this class of BSAP-binding sites made it possible to unequivocally align all known BSAP-binding sites and to deduce a consensus sequence consisting of two distinct half sites. We propose here a model for the paired domain--DNA interaction in which the paired domain is composed of two subdomains that bind to the two half-sites in adjacent major grooves on the same side of the DNA helix. The existence of these half sites and of the two paired domain subregions was directly demonstrated by methylation interference analysis and by in vitro mutagenesis of both the paired domain and its recognition sequence. Both half-sites contribute to the overall affinity of a given BSAP-binding site according to their match with the consensus sequence. However, none of the naturally occurring BSAP-binding sites completely conform to the consensus sequence. Instead, they contain compensatory base changes in their half-sites that explain the versatile and seemingly degenerate DNA sequence recognition of Pax proteins. Domain swap experiments between BSAP and Pax-1 demonstrated that the sequence specificity of the BSAP paired domain is determined by both its amino- and carboxy-terminal subdomains. Moreover, mutations affecting only one of the two subdomains restricted the sequence specificity of the paired domain. Such mutations have been shown previously to be the cause of mouse developmental mutants (undulated, Splotch, and Small eye) and human syndromes (Waardenburg's syndrome and aniridia) and may thus differentially affect the regulation of target genes by the mutated Pax protein.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 355 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3