Developmental and tissue-specific regulation of a novel transcription factor of the sea urchin.

Author:

Barberis A,Superti-Furga G,Vitelli L,Kemler I,Busslinger M

Abstract

We have identified a novel transcription factor that interacts with the promoter of four tissue-specific late histone H2A-2 and H2B-2 genes of the sea urchin by DNase I footprint, mobility shift, and methylation interference analyses. The binding site for this factor is required for efficient transcription of the H2B-2.1 gene both in vitro in nuclear extracts of gastrula embryos and in vivo in microinjected sea urchin embryos. This factor binds with equal affinity to the recognition sequences of all four histone genes in cross-competition assays. Moreover, the binding site of the H2B-2.2 promoter can functionally substitute for that of the H2B-2.1 gene in in vivo expression experiments. Nevertheless, all four binding sites share little sequence homology with each other. This transcription factor increases in abundance during embryogenesis and has been detected in the adult sea urchin only in the tube feet, where the late H2A-2 and H2B-2 genes are expressed specifically. Therefore, we refer to this factor as tissue-specific activator protein (TSAP). The close correlation between the presence of TSAP and the expression pattern of the late H2A-2 and H2B-2 genes suggests that this transcription factor is directly responsible for the developmental and tissue-specific regulation of these genes.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3