Blood-Based Transcriptomic and Proteomic Biomarkers of Emphysema

Author:

Suryadevara Rahul,Gregory Andrew,Lu Robin,Xu Zhonghui,Masoomi Aria,Lutz Sharon M.,Berman Seth,Yun Jeong H.,Saferali Aabida,Hersh Craig P.ORCID,Silverman Edwin K.,Dy Jennifer,Pratte Katherine A.,Bowler Russell P.,Castaldi Peter J.ORCID,Boueiz Adel,

Abstract

ABSTRACTRationaleEmphysema is a COPD phenotype with important prognostic implications. Identifying blood-based biomarkers of emphysema will facilitate early diagnosis and development of targeted therapies.ObjectivesDiscover blood omics biomarkers for chest CT-quantified emphysema and develop predictive biomarker panels.MethodsEmphysema blood biomarker discovery was performed using differential gene expression, alternative splicing, and protein association analyses in a training set of 2,370 COPDGene participants with available whole blood RNA sequencing, plasma SomaScan proteomics, and clinical data. Validation was conducted in a testing set of 1,016 COPDGene subjects. Since low body mass index (BMI) and emphysema often co-occur, we performed a mediation analysis to quantify the effect of BMI on gene and protein associations with emphysema. Elastic net models were also developed in the training sample sequentially using clinical, complete blood count (CBC) cell proportions, RNA sequencing, and proteomic biomarkers to predict quantitative emphysema. Model accuracy was assessed in the testing sample by the area under the receiver-operator-characteristic-curves (AUROC) for subjects stratified into tertiles of emphysema severity.Measurements and Main Results4,913 genes, 1,478 isoforms, 386 exons, and 881 proteins were significantly associated with emphysema(FDR 10%)and yielded 109 biological pathways. 75% of the genes and 77% of the proteins associated with emphysema showed evidence of mediation by BMI. The highest-performing predictive model used clinical, CBC, and protein biomarkers, distinguishing the top from the bottom tertile of emphysema with an AUROC of 0.92.ConclusionsBlood transcriptome and proteome-wide analyses reveal key biological pathways of emphysema and enhance the prediction of emphysema.AT A GLANCE COMMENTARYScientific Knowledge on the SubjectDifferential gene expression and protein analyses have uncovered some of the molecular underpinnings of emphysema. However, no studies have assessed alternative splicing mechanisms and analyzed proteomic data from recently developed high-throughput panels. In addition, although emphysema has been associated with low body mass index (BMI), it is still unclear how BMI affects the transcriptome and proteome of the disease. Finally, the effectiveness of multi-omic biomarkers in determining the severity of emphysema has not yet been investigated.What This Study Adds to the FieldWe performed whole-blood genome-wide RNA sequencing and plasma SomaScan proteomic analyses in the large and well-phenotyped COPDGene study. In addition to confirming earlier findings, our differential gene expression, alternative splicing, and protein analyses identified novel biomarkers and pathways of chest CT-quantified emphysema. Our mediation analysis detected varying degrees of transcriptomic and proteomic mediation due to BMI. Our supervised machine learning modeling demonstrated the utility of incorporating multi-omics data in enhancing the prediction of emphysema.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3