BATCH-SCAMPP: Scaling phylogenetic placement methods to place many sequences

Author:

Wedell EleanorORCID,Shen ChengzeORCID,Warnow TandyORCID

Abstract

AbstractPhylogenetic placement, the problem of placing sequences into phylogenetic trees, has been limited either by the number of sequences placed in a single run or by the size of the placement tree. The most accurate scalable phylogenetic placement method with respect to the number of query sequences placed, EPA-ng (Barbera et al., 2019), has a runtime that scales sub-linearly to the number of query sequences. However, larger phylogenetic trees cause an increase in EPA-ng’s memory usage, limiting the method to placement trees of up to 10,000 sequences. Our recently designed SCAMPP (Wedell et al., 2021) framework has been shown to scale EPA-ng to larger placement trees of up to 200,000 sequences by building a subtree for the placement of each query sequence. The approach of SCAMPP does not take advantage of EPA-ng’s parallel efficiency since it only places a single query for each run of EPA-ng. Here we present BATCH-SCAMPP, a new technique that overcomes this barrier and enables EPA-ng and other phylogenetic placement methods to scale to ultra-large backbone trees and many query sequences. BATCH-SCAMPP is freely available athttps://github.com/ewedell/BSCAMPP_code.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. Fast and accurate distance-based phylogenetic placement using divide and conquer;Molecular Ecology Resources,2022

2. Fast and Accurate Distance-based Phylogenetic Placement using Divide and Conquer

3. Metin Balaban , Shahab Sarmashghi , and Siavash Mirarab . APPLES: distance-based phylogenetic placement for scalable and assembly-free sample identification. bioRxiv, page 475566, 2019.

4. APPLES: Scalable Distance-Based Phylogenetic Placement with or without Alignments

5. EPA-ng: massively parallel evolutionary placement of genetic sequences;Systematic Biology,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3