Scaling deep phylogenetic embedding to ultra-large reference trees: a tree-aware ensemble approach

Author:

Jiang YueyuORCID,McDonald DanielORCID,Knight RobORCID,Mirarab SiavashORCID

Abstract

AbstractPhylogenetic placement of a query sequence on a backbone tree is increasingly used across biomedical sciences to identify the content of a sample from its DNA content. The accuracy of such analyses depends on the density of the backbone tree, making it crucial that placement methods scale to very large trees. Moreover, a new paradigm has been recently proposed to place sequences on the species tree using single-gene data. The goal is to better characterize the samples and to enable combined analyses of marker-gene (e.g., 16S rRNA gene amplicon) and genome-wide data. The recent method DEPP enables performing such analyses using metric learning. However, metric learning is hampered by a need to compute and save a quadratically growing matrix of pairwise distances during training. Thus, DEPP (or any distance-based method) does not scale to more than roughly ten thousand species, a problem that we faced when trying to use our recently released Greengenes2 (GG2) reference tree containing 331,270 species. Scalability problems can be addressed in phylogenetics using divide- and-conquer. However, applying divide- and-conquer to data-hungry machine learning methods needs nuance. This paper explores divide- and-conquer for training ensembles of DEPP models, culminating in a method called C-DEPP that uses carefully crafted techniques to enable quasi-linear scaling while maintaining accuracy. C-DEPP enables placing twenty million 16S fragments on the GG2 reference tree in 41 hours of computation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3