Age-dependent topic modelling of comorbidities in UK Biobank identifies disease subtypes with differential genetic risk

Author:

Jiang XilinORCID,Zhang Martin JinyeORCID,Zhang YidongORCID,Durvasula ArunORCID,Inouye Michael,Holmes Chris,Price Alkes L.,McVean GilORCID

Abstract

AbstractThe analysis of longitudinal data from electronic health records (EHR) has potential to improve clinical diagnoses and enable personalised medicine, motivating efforts to identify disease subtypes from age-dependent patient comorbidity information. Here, we introduce an age-dependent topic modelling (ATM) method that provides a low-rank representation of longitudinal records of hundreds of distinct diseases in large EHR data sets. The model learns, and assigns to each individual, topic weights for several disease topics, each of which reflects a set of diseases that tend to co-occur within individuals as a function of age. Simulations show that ATM attains high accuracy in distinguishing distinct age-dependent comorbidity profiles. We applied ATM to 282,957 UK Biobank samples, analysing 1,726,144 disease diagnoses spanning all 348 diseases with ≥1,000 independent occurrences in the Hospital Episode Statistics (HES) data, identifying 10 disease topics under the optimal model fit. Analysis of an independent cohort, All of Us, with 211,908 samples and 3,098,771 disease diagnoses spanning 233 of the 348 UK Biobank diseases produced highly concordant findings. In UK Biobank we identified 52 diseases with heterogeneous comorbidity profiles (≥500 occurrences assigned to each of ≥2 topics), including breast cancer, type 2 diabetes (T2D), hypertension, and hypercholesterolemia. For most of these diseases, topic assignments were highly age-dependent, suggesting differences in disease aetiology for early-onset vs. late-onset disease. We defined subtypes of the 52 heterogeneous diseases based on the topic assignments, and compared genetic risk across subtypes using polygenic risk scores (PRS). We identified 18 disease subtypes whose PRS differed significantly from other subtypes of the same disease, including a subtype of T2D characterised by cardiovascular comorbidities and a subtype of asthma characterised by dermatological comorbidities. We further identified specific variants underlying these differences such as a T2D-associated SNP in theHMGA2locus that has a higher odds ratio in the top quartile of cardiovascular topic weight (1.18±0.02) compared to the bottom quartile (1.00±0.02) (P=3 × 10-7for difference, FDR = 0.0002 < 0.1). In conclusion, ATM identifies disease subtypes with differential genome-wide and locus-specific genetic risk profiles.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3