Abstract
AbstractPioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression. The role of neurogenic pioneer factor ASCL1 in shaping chromatin landscape in human neurogenesis remains unclear. Here we show that ASCL1 acts as a pioneer transcription factor in a transient population of progenitors. Using anin vitroASCL1 knockout model we show it drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a non-pioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. We find ASCL1 directly interacts with mammalian BAF SWI/SNF chromatin remodeling complexes, essential for neurogenesis and involved in multiple neurodevelopmental disorders. ASCL1 acts as a non-pioneer chromatin remodeler to regulate gene expression at a subset of loci, requiring mBAF SWI/SNF’s ATPase activity for cis-regulation of gene expression. Our findings demonstrate that ASCL1 is a key chromatin remodeler in human neurogenesis, uncovering an alternative mechanism of remodeling function dependent on partner ATPase activity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献