glmGamPoi: fitting Gamma-Poisson generalized linear models on single cell count data

Author:

Ahlmann-Eltze Constantin1ORCID,Huber Wolfgang1

Affiliation:

1. Genome Biology Unit, EMBL, Heidelberg 69117, Germany

Abstract

Abstract Motivation The Gamma-Poisson distribution is a theoretically and empirically motivated model for the sampling variability of single cell RNA-sequencing counts and an essential building block for analysis approaches including differential expression analysis, principal component analysis and factor analysis. Existing implementations for inferring its parameters from data often struggle with the size of single cell datasets, which can comprise millions of cells; at the same time, they do not take full advantage of the fact that zero and other small numbers are frequent in the data. These limitations have hampered uptake of the model, leaving room for statistically inferior approaches such as logarithm(-like) transformation. Results We present a new R package for fitting the Gamma-Poisson distribution to data with the characteristics of modern single cell datasets more quickly and more accurately than existing methods. The software can work with data on disk without having to load them into RAM simultaneously. Availabilityand implementation The package glmGamPoi is available from Bioconductor for Windows, macOS and Linux, and source code is available on github.com/const-ae/glmGamPoi under a GPL-3 license. The scripts to reproduce the results of this paper are available on github.com/const-ae/glmGamPoi-Paper. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

EMBL International PhD Programme

European Research Council Synergy

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3