Pytometry: Flow and mass cytometry analytics in Python

Author:

Büttner MarenORCID,Hempel Felix,Ryborz Thomas,Theis Fabian J.ORCID,Schultze Joachim L.ORCID

Abstract

AbstractFlow and mass cytometry data are commonly analyzed via manual gating strategies which requires prior knowledge, expertise and time. With increasingly complex experiments with many parameters and samples, traditional manual flow and mass cytometry data analysis becomes cumbersome if not inefficient. At the same time, computational tools developed for the analysis of single-cell RNA-sequencing data have made single cell genomics analysis highly efficient, yet they are mostly inaccessible for the analysis of flow and mass cytometry data due to different data formats, noise assumptions and scales. To bring the advantages of both fields together, we developed Pytometry as an extension to the popular scanpy framework for the analysis of flow and mass cytometry data. We showcase a standard analysis workflow on healthy human bone marrow data, illustrating the applicability of tools developed for the larger feature space of single cell genomics data. Pytometry combines joint analysis of multiple samples and advanced computational applications, ranging from automated pre-processing, cell type annotation and disease classification.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3