Efficient cytometry analysis with FlowSOM in Python boosts interoperability with other single-cell tools

Author:

Couckuyt Artuur12ORCID,Rombaut Benjamin12ORCID,Saeys Yvan12ORCID,Van Gassen Sofie12ORCID

Affiliation:

1. Department of Applied Mathematics, Computer Science and Statistics, Ghent University , 9000 Ghent, Belgium

2. Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research , 9052 Ghent, Belgium

Abstract

Abstract Motivation We describe a new Python implementation of FlowSOM, a clustering method for cytometry data. Results This implementation is faster than the original version in R, better adapted to work with single-cell omics data including integration with current single-cell data structures and includes all the original visualizations, such as the star and pie plot. Availability and implementation The FlowSOM Python implementation is freely available on GitHub: https://github.com/saeyslab/FlowSOM_Python.

Funder

Ghent University Special Research Fund

FWO

Research Foundation—Flanders

ISAC Marylou Ingram Scholar

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3