Abstract
AbstractA primary objective in malaria vaccine design is the generation of high-quality antibody responses against the circumsporozoite protein of the malaria parasite, Plasmodium falciparum (PfCSP). To enable rational antigen design, we solved a cryo-EM structure of the highly potent anti-PfCSP antibody L9 in complex with recombinant PfCSP. We found that L9 Fab binds multivalently to the CSP minor (NPNV) repeats, which is stabilized by a novel set of affinity-matured homotypic, antibody-antibody contacts. Molecular dynamics simulations revealed a critical role of the L9 light chain in integrity of the homotypic interface, which likely impacts CSP affinity and protective efficacy. These findings reveal the molecular mechanism of the unique NPNV selectivity of L9 and emphasize the importance of anti-homotypic affinity maturation in protective immunity against P. falciparum.One sentence summaryThe L9 light chain is crucial for potency by conferring multivalent, high affinity binding to the NPNV minor repeats of PfCSP.
Publisher
Cold Spring Harbor Laboratory