A SNP affects Wnt4 expression in endometrial stroma, with antagonistic implications for pregnancy, endometriosis and reproductive cancers

Author:

Pavlicev MihaelaORCID,McDonough-Goldstein Caitlin E.ORCID,Zupan Andreja Moset,Muglia Lisa,Hu Yueh-Chiang,Kong Fansheng,Monangi NagendraORCID,Dagdas Gülay,Zupancic NinaORCID,Marziaz JamieORCID,Sinner DeboraORCID,Zhang Ge,Wagner GünterORCID,Muglia LouisORCID

Abstract

AbstractThe common human single nucleotide polymorphism rs3820282 is associated with multiple phenotypes ranging from gestational length to likelihood of endometriosis and ovarian cancer and can thus serve as a paradigm for a highly pleiotropic genetic variant. Pleiotropy makes it challenging to assign specific causal roles to particular genetic variants. Deleterious mutations in multifunctional genes may cause either the co-occurrence of multiple disorders in the same individuals (i.e., syndromes), or be repeatedly associated with a variety of disorders in a population. Moreover, the adverse effects can occur in combination with advantages in other traits, maintaining high frequencies of deleterious alleles in the population. To reveal the causal role of this specific SNP, we investigated the molecular mechanisms affected by rs3820282 in mice. We have shown previously that rs3820282 introduces a high affinity estrogen receptor 1 binding site at theWnt4locus. Having introduced this nucleotide substitution into the homologous site of the mouse genome by CRISPR/Cas 9 we show that this change causes a specific upregulation ofWnt4transcription in the endometrial stromal cells during the preovulatory estrogen peak in late proestrus. Transcriptomic analysis of the whole uterus reveals broad systemic effects on uterine gene expression, including downregulation of proliferation and induction of many progesterone-regulated pro-implantation genes. The effect on proliferation is limited to the luminal epithelium, whereas other effects involve the uterine stromal compartment. We suggest that in the uterus, these changes could contribute to increased permissiveness to embryo invasion. Yet in other estrogen-responsive tissues, the same changes potentially lead to decreased resistance to invasion by cancer cells and endometriotic foci. A single molecular effect of rs3820282 onWnt4expression may thus underlie the various associated phenotypic effects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3