DeepChIA-PET: Accurately predicting ChIA-PET from Hi-C and ChIP-seq with deep dilated networks

Author:

Liu Tong,Wang Zheng

Abstract

AbstractChromatin interaction analysis by paired-end tag sequencing (ChIA-PET) can capture genome-wide chromatin interactions mediated by a specific DNA-associated protein. The ChIA-PET experiments have been applied to explore the key roles of different protein factors in chromatin folding and transcription regulation. However, compared with widely available Hi-C and ChIP-seq data, there are not many ChIA-PET datasets available in the literature. A computational method for accurately predicting ChIA-PET interactions from Hi-C and ChIP-seq data is needed that can save the efforts of performing wet-lab experiments. Here we present DeepChIA-PET, a supervised deep learning approach that can accurately predict ChIA-PET interactions by learning the latent relationships between ChIA-PET and two widely used data types: Hi-C and ChIP-seq. We trained our deep models with CTCF-mediated ChIA-PET of GM12878 as ground truth, and the deep network contains 40 dilated residual convolutional blocks. We first showed that DeepChIA-PET with only Hi-C as input significantly outperforms Peakachu, another computational method for predicting ChIA-PET from Hi-C but using random forests. We next proved that adding ChIP-seq as one extra input does improve the classification performance of DeepChIA-PET, but Hi-C plays a more prominent role in DeepChIA-PET than ChIP-seq. Our evaluation results indicate that our learned models can accurately predict not only CTCF-mediated ChIA-ET in GM12878 and HeLa but also non-CTCF ChIA-PET interactions, including RNA polymerase II (RNAPII) ChIA-PET of GM12878, RAD21 ChIA-PET of GM12878, and RAD21 ChIA-PET of K562. In total, DeepChIA-PET is an accurate tool for predicting the ChIA-PET interactions mediated by various chromatin-associated proteins from different cell types. DeepChIA-PET is publicly available athttp://dna.cs.miami.edu/DeepChIA-PET/.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3