EpiMCI: Predicting Multi-Way Chromatin Interactions from Epigenomic Signals

Author:

Xu Jinsheng1,Zhang Ping1ORCID,Sun Weicheng1,Zhang Junying1,Zhang Wenxue2,Hou Chunhui3ORCID,Li Li14ORCID

Affiliation:

1. Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

2. Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, MO 65211, USA

3. China State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China

4. Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430074, China

Abstract

The recently emerging high-throughput Pore-C (HiPore-C) can identify whole-genome high-order chromatin multi-way interactions with an ultra-high output, contributing to deciphering three-dimensional (3D) genome organization. However, it also brings new challenges to relevant data analysis. To alleviate this problem, we proposed the EpiMCI, a model for multi-way chromatin interaction prediction based on a hypergraph neural network with epigenomic signals as the input. The EpiMCI integrated separate hyperedge representations with coupling hyperedge information and obtained AUCs of 0.981 and 0.984 in the GM12878 and K562 datasets, respectively, which outperformed the current available method. Moreover, the EpiMCI can be applied to denoise the HiPore-C data and improve the data quality efficiently. Furthermore, the vertex embeddings extracted from the EpiMCI reflected the global chromatin architecture accurately. The principal component analysis suggested that it was well aligned with the activities of genomic regions at the chromatin compartment level. Taken together, the EpiMCI can accurately predict multi-way chromatin interactions and can be applied to studies relying on chromatin architecture.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3