A reevaluation of the relationship between EGL-43 (EVI1/MECOM) and LIN-12 (Notch) duringC. elegansanchor cell invasion

Author:

Martinez Michael A. Q.ORCID,Mullarkey Angelina A.ORCID,Yee CallistaORCID,Zhao Chris Z.,Zhang Wan,Shen KangORCID,Matus David Q.ORCID

Abstract

AbstractDevelopment of theC. elegansreproductive tract is orchestrated by the anchor cell (AC). Among other things, this occurs through a cell invasion event that connects the uterine and vulval tissue. Several key transcription factors regulate AC invasion, such as EGL-43, HLH-2, and NHR-67. Specifically, these transcription factors function together to maintain the post-mitotic state of the AC, a requirement for AC invasion. EGL-43 is theC. eleganshomolog of the human EVI1/MECOM proto-oncogene, and recently, a mechanistic connection has been made between its loss and AC cell-cycle entry. The current model states that EGL-43 represses LIN-12 (Notch) expression to prevent AC proliferation, suggesting that Notch signaling is mitogenic in the absence of EGL-43. To reevaluate the relationship between EGL-43 and LIN-12, we designed and implemented a heterologous co-expression system called AIDHB that combines the auxin-inducible degron (AID) system of plants with a live cell-cycle sensor based on human DNA helicase B (DHB). After validating the AIDHB approach using AID-tagged GFP, we sought to test this approach using AID-tagged alleles ofegl-43andlin-12. Auxin-inducible degradation of either EGL-43 or LIN-12 resulted in the expected AC phenotypes. Lastly, we seized the opportunity to pair AIDHB with RNAi to co-deplete LIN-12 and EGL-43, respectively. This combined approach revealed that LIN-12 is not required for AC proliferation following loss of EGL-43, which contrasts with a double RNAi experiment directed against these same targets. The addition of AIDHB to theC. eleganstransgenic toolkit should facilitate functionalin vivoimaging of cell-cycle associated phenomena.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3