Killing by Type VI secretion drives clonal phase separation and the evolution of cooperation

Author:

McNally Luke,Bernardy Eryn,Thomas Jacob,Kalziqi Arben,Pentz Jennifer,Brown Sam,Hammer Brian,Yunker Peter J.,Ratcliff William

Abstract

SummaryBy nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas1–5. Spatial assortment can act as a general solution to social conflict by allowing extracellular goods to be utilized preferentially by productive genotypes1,6,7. Established mechanisms that generate microbial assortment depend on the availability of free space8–14; however, microbes often live in densely-packed environments, wherein these mechanisms are ineffective. Here, we describe a novel class of self-organized pattern formation that facilitates the development of spatial structure within densely-packed bacterial colonies. Contact-mediated killing through the Type VI secretion system (T6SS) drives high levels of assortment by precipitating phase separation, even in initially well-mixed populations that do not necessarily exhibit net growth. We examine these dynamics using three different classes of mathematical models and experiments with mutually antagonistic strains of Vibrio cholerae growing on solid media, and find that all appear to de-mix via the same ‘Model A’ universality class of order-disorder transition. We mathematically demonstrate that contact killing should favour the evolution of public goods cooperation, and empirically examine the relationship between T6SSs and potential cooperation through phylogenetic analysis. Across 26 genera of Proteobacteria and Bacteroidetes, the proportion of a strain’s genome that codes for potentially-exploitable secreted proteins increases significantly with boththe number of Type 6 secretion systems and the number of T6SS effectors that it possesses. This work demonstrates how antagonistic traits—likely evolved for the purpose of killing competitors—can indirectlylead to the evolution of cooperation by driving genetic phase separation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3