Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa

Author:

Kümmerli Rolf1,Griffin Ashleigh S.12,West Stuart A.12,Buckling Angus2,Harrison Freya23

Affiliation:

1. Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK

2. Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK

3. Biodiversity Lab, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK

Abstract

There has been extensive theoretical debate over whether population viscosity (limited dispersal) can favour cooperation. While limited dispersal increases the probability of interactions occurring between relatives, which can favour cooperation, it can also lead to an increase in competition between relatives and this can reduce or completely negate selection for cooperation. Despite much theoretical attention, there is a lack of empirical research investigating these issues. We cultured Pseudomonas aeruginosa bacteria in medium with different degrees of viscosity and examined the fitness consequences for a cooperative trait—the production of iron-scavenging siderophore molecules. We found that increasing viscosity of the growth medium (i) significantly limited bacterial dispersal and the diffusion of siderophore molecules and (ii) increased the fitness of individuals that produced siderophores relative to mutants that did not. We propose that viscosity favours siderophore-producing individuals in this system, because the benefits of siderophore production are more likely to accrue to relatives (i.e. greater indirect benefits), and, at the same time, bacteria are more likely to gain direct fitness benefits by taking up siderophore molecules produced by themselves (i.e. the trait becomes less cooperative). Our results suggest that viscosity of the microbial growth environment is a crucial factor determining the dynamics of wild-type bacteria and siderophore-deficient mutants in natural habitats, such as the viscous mucus in cystic fibrosis lung.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 195 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3