I TRIED A BUNCH OF THINGS: THE DANGERS OF UNEXPECTED OVERFITTING IN CLASSIFICATION

Author:

Powell Michael,Hosseini Mahan,Collins John,Callahan-Flintoft Chloe,Jones William,Bowman Howard,Wyble BradORCID

Abstract

ABSTRACTMachine learning is a powerful set of techniques that has enhanced the abilities of neuroscientists to interpret information collected through EEG, fMRI, and MEG data. With these powerful techniques comes the danger of overfitting of hyper-parameters which can render results invalid, and cause a failure to generalize beyond the data set. We refer to this problem as ‘over-hyping’ and show that it is pernicious despite commonly used precautions. In particular, over-hyping occurs when an analysis is run repeatedly with slightly different analysis parameters and one set of results is selected based on the analysis. When this is done, the resulting method is unlikely to generalize to a new dataset, rendering it a partially, or perhaps even completely spurious result that will not be valid outside of the data used in the original analysis. While it is commonly assumed that cross-validation is an effective protection against such spurious results generated through overfitting or overhyping, this is not actually true. In this article, we show that both one-shot and iterative optimization of an analysis are prone to over-hyping, despite the use of cross-validation. We demonstrate that non-generalizable results can be obtained even on non-informative (i.e. random) data by modifying hyper-parameters in seemingly innocuous ways. We recommend a number of techniques for limiting over-hyping, such as lock-boxes, blind analyses, pre-registrations, and nested cross-validation. These techniques, are common in other fields that use machine learning, including computer science and physics. Adopting similar safeguards is critical for ensuring the robustness of machine-learning techniques in the neurosciences.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. A survey of cross-validation procedures for model selection

2. Bouthillier, X. , Varoquaux, G. (2020) Survey of machine-learning experimental methods at NeurIPS2019 and ICLR2020. [Research Report] Inria Saclay Ile de France. 2020. ffhal-02447823f

3. Data-driven region-of-interest selection without inflating Type I error rate

4. On over-fitting in model selection and subsequent selection bias in performance evaluation;The Journal of Machine Learning Research,2010

5. Evidence for a two-peak structure in the A 2 meson;Physics Letters B,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3