Abstract
Translation errors limit the accuracy of information transmission from DNA to proteins. Selective pressures shape the way cells produce their proteins: the translation machinery and the mRNA sequences it decodes co-evolved to ensure that translation proceeds fast and accurately in a wide range of environmental conditions. Our understanding of the causes of amino acid misincorporations and of their effect on the evolution of protein sequences is largely hindered by the lack of experimental methods to observe errors at the full proteome level. Here, we systematically detect and quantify errors in entire proteomes from mass spectrometry data. Following HPLC MS-MS data acquisition, we identify E. coli and S. cerevisiae peptides whose mass and fragment ion spectrum are consistent with that of a peptide bearing a single amino acid substitution, and verify that such spectrum cannot result from a post-translational modification. Our analyses confirm that most substitutions occur due to codon-to-anticodon mispairing within the ribosome. Patterns of errors due to mispairing were similar in bacteria and yeast, suggesting that the error spectrum is chemically constrained. Treating E. coli cells with a drug known to affect ribosomal proofreading increased the error rates due to mispairing at the wobble codon position. Starving bacteria for serine resulted in specific patterns of substitutions reflecting the amino acid deficiency. Overall, translation errors tend to occur at positions that are less evolutionarily conserved, and that minimally affect protein energetic stability, indicating that they are selected against. Genome wide ribosome density data suggest that errors occur at sites where ribosome velocity is relatively high, supporting the notion of a trade-off between speed and accuracy as predicted by proofreading theories. Together our results reveal a mechanistic basis for ribosome errors in translation.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献