Tautomerization constrains the accuracy of codon-anticodon decoding

Author:

Kazantsev AndriyORCID,Ignatova ZoyaORCID

Abstract

AbstractG○U(T) mismatch has the highest contribution to the error rate of base pair recognition in replication, as well as in codon-anticodon decoding in translation. Recently, this effect was unambiguously linked to keto-enol tautomerization, which enables the Watson-Crick (WC) geometry of the base pair. Structural studies of the ribosome revealing G○U in the WC geometry in the closed state of the A-site challenge the canonical induced-fit model of decoding and currently lack a physicochemical explanation.Using computational and theoretical methods, we address effects of the ribosomal A-site on the wobble↔WC tautomerization reaction in G○U (wb-WC reaction), and the consequent implications for the decoding mechanism in translation. The free energy change of the wb-WC reaction in the middle codon-anticodon position was calculated with quantum-mechanical/molecular-mechanical umbrella sampling simulations. The wb-WC reaction was endoergic in the open A-site, but exoergic in the closed state. This effect can be explained in part by the decreased polarity of the closed A-site.We developed a model of initial selection in translation that incorporates the wb-WC reaction parameters in the open and closed states of the A-site. In the new model, the exoergic wb-WC reaction is kinetically restricted by the decoding rates, which explains the observations of the WC geometry at equilibrium conditions. Moreover, the model reveals constraints imposed by the exoergic wb-WC reaction on the decoding accuracy: its equilibration counteracts the favorable contribution from equilibration of the open-closed transition. The similarity of the base-pair recognition mechanism in DNA polymerases allows extending this model to replication as well. Our model can be a step towards a general recognition model for flexible substrates.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3