Composite measurements and molecular compressed sensing for highly efficient transcriptomics

Author:

Cleary Brian,Cong Le,Lander Eric S.,Regev Aviv

Abstract

AbstractRNA profiling is an excellent phenotype of cellular responses and tissue states, but can be costly to generate at the massive scale required for studies of regulatory circuits, genetic states or perturbation screens. Here, we draw on a series of advances over the last decade in the field of mathematics to establish a rigorous link between biological structure, data compressibility, and efficient data acquisition. We propose that very few random composite measurements – in which gene abundances are combined in a random linear combination – are needed to approximate the high-dimensional similarity between any pair of gene abundance profiles. We then show how finding latent, sparse representations of gene expression data would enable us to “decompress” a small number of random composite measurements and recover high-dimensional gene expression levels that were not measured (unobserved). We present a new algorithm for finding sparse, modular structure, which improves the ability to interpret samples in terms of small numbers of active modules, and show that the modular structure we find is sufficient to recover gene expression profiles from composite measurements (with ~100-fold fewer composite measurements than genes). Moreover, the knowledge that sparse, modular structures exist allows us to recover expression profiles from composite measurements, even without access to any training data. Finally, we present a proof-of-concept experiment for making composite measurements in the laboratory, involving the measurement of linear combinations of RNA abundances. Altogether, our results suggest new compressive modalities in experimental biology that can form a foundation for massive scaling in high-throughput measurements, while also offering new insights into the interpretation of high-dimensional data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3