Decomposing cell identity for transfer learning across cellular measurements, platforms, tissues, and species

Author:

Stein-O’Brien Genevieve L.ORCID,Clark Brian S.,Sherman Thomas,Zibetti Cristina,Hu Qiwen,Sealfon Rachel,Liu Sheng,Qian Jiang,Colantuoni Carlo,Blackshaw SethORCID,Goff Loyal A.ORCID,Fertig Elana J.ORCID

Abstract

ABSTRACTNew approaches are urgently needed to glean biological insights from the vast amounts of single cell RNA sequencing (scRNA-Seq) data now being generated. To this end, we propose that cell identity should map to a reduced set of factors which will describe both exclusive and shared biology of individual cells, and that the dimensions which contain these factors reflect biologically meaningful relationships across different platforms, tissues and species. To find a robust set of dependent factors in large-scale scRNA- Seq data, we developed a Bayesian non-negative matrix factorization (NMF) algorithm, scCoGAPS. Application of scCoGAPS to scRNA-Seq data obtained over the course of mouse retinal development identified gene expression signatures for factors associated with specific cell types and continuous biological processes. To test whether these signatures are shared across diverse cellular contexts, we developed projectR to map biologically disparate datasets into the factors learned by scCoGAPS. Because projecting these dimensions preserve relative distances between samples, biologically meaningful relationships/factors will stratify new data consistent with their underlying processes, allowing labels or information from one dataset to be used for annotation of the other—a machine learning concept called transfer learning. Using projectR, data from multiple datasets was used to annotate latent spaces and reveal novel parallels between developmental programs in other tissues, species and cellular assays. Using this approach we are able to transfer cell type and state designations across datasets to rapidly annotate cellular features in a new dataset without a priori knowledge of their type, identify a species-specific signature of microglial cells, and identify a previously undescribed subpopulation of neurosecretory cells within the lung. Together, these algorithms define biologically meaningful dimensions of cellular identity, state, and trajectories that persist across technologies, molecular features, and species.GRAPHICAL ABSTRACT

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3