Optimal filtering strategies for task-specific functional PET imaging

Author:

Reed Murray BruceORCID,León Magdalena Ponce deORCID,Klug SebastianORCID,Milz ChristianORCID,Silberbauer Leo RobertORCID,Falb PiaORCID,Godbersen Godber MathisORCID,Jamadar SharnaORCID,Chen ZhaolinORCID,Nics LukasORCID,Hacker MarcusORCID,Lanzenberger RupertORCID,Hahn AndreasORCID

Abstract

AbstractFunctional Positron Emission Tomography (fPET) has advanced as an effective tool for investigating dynamic processes in glucose metabolism and neurotransmitter action, offering potential insights into brain function, disease progression, and treatment development. Despite significant methodological advances, extracting stimulation-specific information presents additional challenges in optimizing signal processing across both spatial and temporal domains, which are essential for obtaining clinically relevant insights. This study aims to provide a systematic evaluation of state-of-the-art filtering techniques for fPET imaging.Forty healthy participants underwent a single [18F]FDG PET/MR scan, engaging in the cognitive task Tetris®. Twenty thereof also underwent a second PET/MR session. Eight filtering techniques, including 3D and 4D Gaussian smoothing, highly constrained backprojection (hypr), iterative hypr (Ihypr4D), two MRI-Markov Random Field (MRI-MRF) filters (L=10 and 14 mm neighborhood) as well as static and dynamic Non-Local Means (sNLM and dNLM respectively) approaches, were applied to fPET data. Test-retest reliability (intraclass correlation coefficient), the identifiability of the task signal (temporal signal-to-noise ratio (tSNR)), spatial task-based activation (group level t-values), and sample size calculations were assessed.Results indicate distinct performance between filtering techniques. Compared to standard 3D Gaussian smoothing, dNLM, sNLM, MRI-MRF L=10 and Ihypr4D filters exhibited superior tSNR, while only dNLM and hypr showed improved test-retest reliability. Spatial task-based activation was enhanced by both NLM filters and MRI-MRF approaches. The dNLM enabled a minimum reduction of 15.4% in required sample size.The study systematically evaluated filtering techniques in fPET data processing, highlighting their strengths and limitations. The dNLM filter emerges as a promising choice, with improved performance across all metrics. However, filter selection should align with specific study objectives, considering factors like processing time and resource constraints.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3