Graph Contrastive Learning as a Versatile Foundation for Advanced scRNA-seq Data Analysis

Author:

Zhang Zhenhao,Liu Yuxi,Xiao Meichen,Wang Kun,Huang YuORCID,Bian JiangORCID,Yang RuolinORCID,Li FuyiORCID

Abstract

AbstractSingle-cell RNA sequencing (scRNA-seq) offers unprecedented insights into transcriptome-wide gene expression at the single-cell level. Cell clustering has been long established in the analysis of scRNA-seq data to identify the groups of cells with similar expression profiles. However, cell clustering is technically challenging, as raw scRNA-seq data have various analytical issues, including high dimensionality and dropout values. Existing research has developed deep learning models, such as graph machine learning models and contrastive learning-based models, for cell clustering using scRNA-seq data and has summarized the unsupervised learning of cell clustering into a human-interpretable format. While advances in cell clustering have been profound, we are no closer to finding a simple yet effective framework for learning high-quality representations necessary for robust clustering. In this study, we propose scSimGCL, a novel framework based on the graph contrastive learning paradigm for self-supervised pretraining of graph neural networks. This framework facilitates the generation of high-quality representations crucial for cell clustering. Our scSimGCL incorporates cell-cell graph structure and contrastive learning to enhance the performance of cell clustering. Extensive experimental results on simulated and real scRNA-seq datasets suggest the superiority of the proposed scSimGCL. Moreover, clustering assignment analysis confirms the general applicability of scSimGCL, including state-of-the-art clustering algorithms. Further, ablation study and hyperparameter analysis suggest the efficacy of our network architecture with the robustness of decisions in the self-supervised learning setting. The proposed scSimGCL can serve as a foundation model for practitioners developing tools for cell clustering. The source code of scSimGCL is publicly available athttps://github.com/zhangzh1328/scSimGCL.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3