Affiliation:
1. Key Laboratory of Machine Perception (MOE), School of Artificial Intelligence, Peking University , Beijing 100871, China
Abstract
Abstract
Motivation
Emerging single-cell RNA sequencing (scRNA-seq) technology empowers biological research at cellular level. One of the most crucial scRNA-seq data analyses is clustering single cells into subpopulations. However, the high variability, high sparsity and high dimensionality of scRNA-seq data pose lots of challenges for clustering analysis. Although many single-cell clustering methods have been recently developed, few of them fully exploit latent relationship among cells, thus leading to suboptimal clustering results.
Results
Here, we propose a novel unsupervised clustering method, scGAC (single-cell Graph Attentional Clustering), for scRNA-seq data. scGAC firstly constructs a cell graph and refines it by network denoising. Then, it learns clustering-friendly representation of cells through a graph attentional autoencoder, which propagates information across cells with different weights and captures latent relationship among cells. Finally, scGAC adopts a self-optimizing method to obtain the cell clusters. Experiments on 16 real scRNA-seq datasets show that scGAC achieves excellent performance and outperforms existing state-of-art single-cell clustering methods.
Availability and implementation
Python implementation of scGAC is available at Github (https://github.com/Joye9285/scGAC) and Figshare (https://figshare.com/articles/software/scGAC/19091348).
Supplementary information
Supplementary data are available at Bioinformatics online.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献