Pan-cancer proteogenomic landscape of whole-genome doubling reveals putative therapeutic targets in various cancer types

Author:

Chang Eunhyong,Hwang Hee Sang,Song Kyu Jin,Kim Kwoneel,Kim Min-Sik,Jang Se Jin,Kim Kwang Pyo,You Sungyong,An Joon-YongORCID

Abstract

AbstractBackgroundWhole-genome doubling (WGD) is prevalent in cancer and drives tumor development and chromosomal instability. Driver mutations in mitotic cell cycle genes and cell cycle upregulation have been reported as the major molecular underpinnings of WGD tumors. However, the underlying genomic signatures and regulatory networks involved in gene transcription and kinase phosphorylation remain unclear. Here, we aimed to comprehensively decipher the molecular landscape underlying WGD tumors.MethodsWe performed a pan-cancer proteogenomic analysis and compared 10 cancer types by integrating genomic, transcriptomic, proteomic, and phosphoproteomic datasets from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). We also integrated the cancer dependency data of each cancer cell line and the survival properties of each cancer patient to propose promising therapeutic targets for patients with WGD.ResultsOur study delineated distinct copy number signatures characterizing WGD-positive tumors into three major groups: highly unstable genome, focal instability, and tetraploidy. Furthermore, the analysis revealed the heterogeneous mechanisms underlying WGD across cancer types with specific structural variation patterns. Upregulation of the cell cycle and downregulation of the immune response were found to be specific to certain WGD tumor types. Transcription factors (TFs) and kinases exhibit cancer-specific activities, emphasizing the need for tailored therapeutic approaches.ConclusionThis study introduces an integrative approach to identify potential TF targets for drug development, highlighting BPTF as a promising candidate for the treatment of head and neck squamous cell carcinoma. Additionally, drug repurposing strategies have been proposed, suggesting potential drugs for the treatment of WGD-associated cancers. Our findings offer insights into the heterogeneity of WGD and have implications for precision medicine approaches for cancer treatment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3