Kidney collecting duct cell type composition is regulated by Notch signaling via modulation of mTORC1

Author:

deRiso Jennifer,Mukherjee Malini,Janga Madhusudhana,Simmons Alicia,Kareta Michael,Tao Jianning,Chandrasekar Indra,Surendran KameswaranORCID

Abstract

AbstractThe plasticity and diversity of cell types with specialized functions likely defines the capacity of multicellular organisms to adapt to physiologic stressors. The kidney collecting ducts contribute to water, electrolyte, and pH homeostasis and are composed of mature intermingled epithelial cell types that are susceptible to transdifferentiate. The conversion of kidney collecting duct principal cells to intercalated cells is actively inhibited by Notch signaling to ensure urine concentrating capability. Here we identify Hes1, a target of Notch signaling, allows for maintenance of functionally distinct epithelial cell types within the same microenvironment by regulating mechanistic target of rapamycin complex 1 (mTORC1) activity. Hes1 directly represses the expression ofinsulin receptor substrate 1(Irs1), an upstream component of mTOR pathway and suppresses mTORC1 activity in principal cells. Genetic inactivation oftuberous sclerosis complex 2(Tsc2) to increase mTORC1 activity in mature principal cells is sufficient to promote acquisition of intercalated cell properties, while inhibition of mTORC1 in adult kidney epithelia suppresses intercalated cell properties. Considering that mTORC1 integrates environmental cues, the linkage of functionally distinct epithelial cell types to mTORC1 activity levels likely allows for cell plasticity to be regulated by physiologic and metabolic signals and the ability to sense/transduce these signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3