Abstract
ABSTRACTThe formation of the plant body proceeds in a sequential post-embryonic manner through the action of meristems. Tightly coordinated meristem regulation is required for development and reproductive success, eventually determining yield in crop species. In maize, the REL2 family of transcriptional corepressors includes four members, REL2, RELK1 (REL2-LIKE1), RELK2, and RELK3. In a screen forrel2enhancers, we identified shorter double mutants with enlarged female inflorescence meristems (IMs) carrying mutations inRELK1. Expression and genetic analysis indicate thatREL2andRELK1cooperatively regulate female IM development by controlling genes involved in redox balance, hormone homeostasis, and differentiation, ultimately tipping the meristem toward an environment favorable to expanded expression of theZmWUSCHEL1gene, a key stem-cell promoting transcription factor. We further demonstrate thatRELKgenes have partially redundant yet diverse functions in the maintenance of various meristem types during development. By exploiting subtle increases in ear IM size inrel2heterozygous plants, we also show that extra rows of kernels are formed across a diverse set of F1 hybrids. Our findings reveal that the REL2 family maintains development from embryonic initiation to reproductive growth and can potentially be harnessed for increasing seed yield in a major crop species.One sentence summaryREL2-RELKs fine tune hormone and chemical cues to prevent expanded expression of ZmWUSCHEL1 in maize inflorescence meristems, and can potentially be harnessed for increasing seed yield in hybrids.
Publisher
Cold Spring Harbor Laboratory