A cross ancestry genetic study of psychiatric disorders from India

Author:

Holla Bharath,Mahadevan Jayant,Ganesh Suhas,Sud ReetekaORCID,Janardhanan Meghana,Balachander Srinivas,Strom Nora,Mattheisen Manuel,Sullivan Patrick F,Huang Hailiang,Zandi Peter,Benegal Vivek,Reddy YC Janardhan,Jain Sanjeev, , , , ,Purushottam Meera,Viswanath Biju

Abstract

AbstractGenome-wide association studies across diverse populations may help validate and confirm genetic contributions to risk of disease. We estimated the extent of population stratification as well as the predictive accuracy of polygenic scores (PGS) derived from European samples to a data set from India. We analysed 2685 samples from two data sets, a population neurodevelopmental study (cVEDA) and a hospital-based sample of bipolar affective disorder (BD) and obsessive-compulsive disorder (OCD). Genotyping was conducted using Illumina’s Global Screening Array.Population structure was examined with principal component analysis (PCA), uniform manifold approximation and projection (UMAP), support vector machine (SVM) ancestry predictions, and admixture analysis. PGS were calculated from the largest available European discovery GWAS summary statistics for BD, OCD, and externalizing traits using two Bayesian methods that incorporate local linkage disequilibrium structures (PGS-CS-auto) and functional genomic annotations (SBayesRC). Our analyses reveal global and continental PCA overlap with other South Asian populations. Admixture analysis revealed a north-south genetic axis within India (FST1.6%). The UMAP partially reconstructed the contours of the Indian subcontinent.The Bayesian PGS analyses indicates moderate-to-high predictive power for BD. This was despite the cross-ancestry bias of the discovery GWAS dataset, with the currently available data. However, accuracy for OCD and externalizing traits was much lower. The predictive accuracy was perhaps influenced by the sample size of the discovery GWAS and phenotypic heterogeneity across the syndromes and traits studied. Our study results highlight the accuracy and generalizability of newer PGS models across ancestries. Further research, across diverse populations, would help understand causal mechanisms that contribute to psychiatric syndromes and traits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3