A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease

Author:

Patel Aniruddh P.,Wang MinxianORCID,Ruan Yunfeng,Koyama Satoshi,Clarke Shoa L.ORCID,Yang Xiong,Tcheandjieu CatherineORCID,Agrawal Saaket,Fahed Akl C.,Ellinor Patrick T.ORCID,Tsao Philip S.ORCID,Sun Yan V.ORCID,Cho Kelly,Wilson Peter W. F.,Assimes Themistocles L.ORCID,van Heel David A.ORCID,Butterworth Adam S.ORCID,Aragam Krishna G.,Natarajan PradeepORCID,Khera Amit V.ORCID,

Abstract

AbstractIdentification of individuals at highest risk of coronary artery disease (CAD)—ideally before onset—remains an important public health need. Prior studies have developed genome-wide polygenic scores to enable risk stratification, reflecting the substantial inherited component to CAD risk. Here we develop a new and significantly improved polygenic score for CAD, termed GPSMult, that incorporates genome-wide association data across five ancestries for CAD (>269,000 cases and >1,178,000 controls) and ten CAD risk factors. GPSMult strongly associated with prevalent CAD (odds ratio per standard deviation 2.14, 95% confidence interval 2.10–2.19, P < 0.001) in UK Biobank participants of European ancestry, identifying 20.0% of the population with 3-fold increased risk and conversely 13.9% with 3-fold decreased risk as compared with those in the middle quintile. GPSMult was also associated with incident CAD events (hazard ratio per standard deviation 1.73, 95% confidence interval 1.70–1.76, P < 0.001), identifying 3% of healthy individuals with risk of future CAD events equivalent to those with existing disease and significantly improving risk discrimination and reclassification. Across multiethnic, external validation datasets inclusive of 33,096, 124,467, 16,433 and 16,874 participants of African, European, Hispanic and South Asian ancestry, respectively, GPSMult demonstrated increased strength of associations across all ancestries and outperformed all available previously published CAD polygenic scores. These data contribute a new GPSMult for CAD to the field and provide a generalizable framework for how large-scale integration of genetic association data for CAD and related traits from diverse populations can meaningfully improve polygenic risk prediction.

Funder

U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute

Massachusetts General Hospital

Broad Institute

Harvard Catalyst

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

American Heart Association

U.S. Department of Veterans Affairs

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3