Somatic embryogenesis of grapevine (Vitis vinifera) expresses a transcriptomic hourglass

Author:

Koska Sara,Leljak-Levanić Dunja,Malenica Nenad,Villi Kian Bigović,Futo Momir,Čorak Nina,Jagić Mateja,Tušar Anja,Kasalo Niko,Domazet-Lošo Mirjana,Vlahoviček Kristian,Domazet-Lošo TomislavORCID

Abstract

AbstractAt the molecular level, multicellular eukaryotic lineages and bacterial biofilms show predictable evolutionary footprints in their development. For instance, the zygotic embryogenesis ofArabidopsis, which is initiated by gamete fusion, shows hourglass-shaped ontogeny-phylogeny correlations at the transcriptome level. However, many plants are capable of yielding a fully viable next generation by somatic embryogenesis — a comparable developmental process that usually starts by the embryogenic induction of a diploid somatic cell. This leads to the question: is the hourglass-shaped ontogeny-phylogeny correlation preserved in somatic embryogenesis? To explore the correspondence between ontogeny and phylogeny in this alternative developmental route in plants, we developed a new and highly efficient model of somatic embryogenesis in grapevine (Vitis vinifera) and sequenced its developmental transcriptomes. By combining the evolutionary properties of grapevine genes with their expression values, which were recovered from early induction until the formation of juvenile plants, we found a strongly supported hourglass-shaped developmental trajectory. However, in contrast to zygotic embryogenesis inArabidopsiswhere the torpedo stage was evolutionary the most inert, we found that in the somatic embryogenesis of grapevine the heart stage expressed evolutionary the oldest and the most conserved transcriptome. This is a surprising finding because it suggests a better evolutionary system-level analogy between animal development and plant somatic embryogenesis than zygotic embryogenesis. We conclude that macroevolutionary logic is deeply hardwired in plant ontogeny and that somatic embryogenesis is likely a primordial embryogenic program in plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3