Abstract
AbstractA bilateral body plan is predominant throughout the animal kingdom. Bilaterality of amniote embryos becomes recognizable as midline morphogenesis begins at gastrulation, bisecting an embryonic field into the left and right sides, and left-right asymmetry patterning follows. While a series of laterality genes expressed after the left-right compartmentalization has been extensively studied, the laterality patterning prior to and at the initiation of midline morphogenesis has remained unclear. Here, through a biophysical quantification in a high spatial and temporal resolution, applied to a chick model system, we show that a large-scale bilateral counter-rotating cellular flow, termed as ‘polonaise movements’, display left-right asymmetries in early gastrulation. This cell movement starts prior to the formation of the primitive streak, which is the earliest midline structure, and earlier than expression of laterality genes. The cellular flow speed and vorticity unravel the location and timing of the left-right asymmetries. The bilateral flows displayed a Right dominance after six hours since the start of cell movements. Mitotic arrest that diminishes primitive streak formation resulted in changes in the bilateral flow pattern, but the Right dominance persisted. Our data indicate that the left-right asymmetry in amniote gastrula becomes detectable prior to the point when the asymmetric regulation of the laterality signals at the node leads to the left-right patterning. More broadly, our results suggest that physical processes can play an unexpected but significant role in influencing left-right laterality during embryonic development.Significance StatementBilaterians are defined by a bilaterally symmetrical body plan. Vertebrates exhibit external bilateral symmetry but display left-right (LR) asymmetry in their internal organs. In amniote embryos, the initiation of LR symmetry breaking is not well understood. Here, we study LR symmetry breaking in the chick embryo due to its easy accessibility and similarity to human development. Our biophysical approaches to quantify cellular flows inferred that LR symmetry breaking occurs prior to the formation of Hensen’s node, a LR organizer, which serves as a signaling center for LR patterning programs. Our work demonstrates that quantitative biophysical parameters can help unravel the initiation of LR symmetry breaking, suggesting involvement of physical mechanisms in this critical biological patterning process.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献