DeepKin: precise estimation of in-depth relatedness and its application in UK Biobank

Author:

Zhang Qi-Xin,Jayasinghe Dovini,Lee Sang HongORCID,Xu Hai-Ming,Chen Guo-BoORCID

Abstract

AbstractAccurately estimating relatedness between samples is crucial in genetics and epidemiological analysis. Using genome-wide single nucleotide polymorphisms (SNPs), it is now feasible to measure realized relatedness even in the absence of pedigree. However, the sampling variation in SNP-based measures and factors affecting method-of-moments relatedness estimators have not been fully explored, whilst static cut-off thresholds have traditionally been employed to classify relatedness levels for decades. Here, we introduce the deepKin framework as a moment-based relatedness estimation and inference method that incorporates data-specific cut-off threshold determination. It addresses the limitations of previous moment estimators by leveraging the sampling variance of the estimator to provide statistical inference and classification. Key principles in relatedness estimation and inference are provided, including inferring the critical value required to reject the hypothesis of unrelatedness, which we refer to as the deepest significant relatedness, determining the minimum effective number of markers, and understanding the impact on statistical power. Through simulations, we demonstrate that deepKin accurately infers both unrelated pairs and relatives with the support of sampling variance. We then apply deepKin to two subsets of the UK Biobank dataset. In the 3K Oxford subset, tested with four sets of SNPs, the SNP set with the largest effective number of markers and correspondingly the smallest expected sampling variance exhibits the most powerful inference for distant relatives. In the 430K British White subset, deepKin identifies 212,120 pairs of significant relatives and classifies them into six degrees. Additionally, cross-cohort significant relative ratios among 19 assessment centers located in different cities are geographically correlated, while within-cohort analyses indicate both an increase in close relatedness and a potential increase in diversity from north to south throughout the UK. Overall, deepKin presents a novel framework for accurate relatedness estimation and inference in biobank-scale datasets. For biobank-scale application we have implemented deepKin as an R package, available in the GitHub repository (https://github.com/qixininin/deepKin).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3