Assessing AF2’s ability to predict structural ensembles of proteins

Author:

Riccabona Jakob R.,Spoendlin Fabian C.,Fischer Anna-Lena M.,Loeffler Johannes R.,Quoika Patrick K.,Jenkins Timothy P.,Ferguson James A.,Smorodina Eva,Laustsen Andreas H.,Greiff VictorORCID,Forli StefanoORCID,Ward Andrew B.ORCID,Deane Charlotte M.ORCID,Fernández-Quintero Monica L.

Abstract

AbstractRecent breakthroughs in protein structure prediction have enhanced the precision and speed at which protein configurations can be determined, setting new benchmarks for accuracy and efficiency in the field. However, the fundamental mechanisms of biological processes at a molecular level are often connected to conformational changes of proteins. Molecular dynamics (MD) simulations serve as a crucial tool for capturing the conformational space of proteins, providing valuable insights into their structural fluctuations. However, the scope of MD simulations is often limited by the accessible timescales and the computational resources available, posing challenges to comprehensively exploring protein behaviors. Recently emerging approaches have focused on expanding the capability of AlphaFold2 (AF2) to predict conformational substates of protein structures by manipulating the input multiple sequence alignment (MSA). These approaches operate under the assumption that the MSA also contains information about the heterogeneity of protein structures. Here, we benchmark the performance of various workflows that have adapted AF2 for ensemble prediction focusing on the subsampling of the MSA as implemented in ColabFold and compare the obtained structures with ensembles obtained from MD simulations and NMR. As test cases, we chose four proteins namely the bovine pancreatic inhibitor protein (BPTI), thrombin and two antigen binding fragments (antibody Fv and nanobody), for which reliable experimentally validated structural information (X-ray and/or NMR) was available. Thus, we provide an overview of the levels of performance and accessible timescales that can currently be achieved with machine learning (ML) based ensemble generation. In three out of the four test cases, we find structural variations fall within the predicted ensembles. Nevertheless, significant minima of the free energy surfaces remain undetected. This study highlights the possibilities and pitfalls when generating ensembles with AF2 and thus may guide the development of future tools while informing upon the results of currently available applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting protein conformational motions using energetic frustration analysis and AlphaFold2;Proceedings of the National Academy of Sciences;2024-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3