Glenn circulation causes early and progressive shunting in a surgical model of pulmonary arteriovenous malformations

Author:

Wan Tina,Rousseau Henry,Mattern Carol,Tabor Madeline,Hodges Matthew R.,Ramchandran RamaniORCID,Spearman Andrew D.ORCID

Abstract

AbstractBackgroundPulmonary arteriovenous malformations (PAVMs) universally develop in patients with single ventricle congenital heart disease (CHD). Single ventricle PAVMs have been recognized for over 50 years, yet they are poorly understood, and we lack any medical therapies. To improve our understanding of single ventricle PAVM initiation and progression, we developed a surgical rat model of Glenn circulation and characterized PAVM physiology over multiple time points.MethodsUsing adult rats, we performed a left thoracotomy and end-to-end anastomosis of the left superior vena cava to the left pulmonary artery (unilateral Glenn), or sham surgical control. To assess for PAVM physiology in the left lung, we quantified intrapulmonary shunting using two independent methods (bubble echocardiography and fluorescent microsphere injection) at 2 weeks, 2 months, and 6 months. Additionally, we performed arterial blood gas measurements to assess oxygenation and plethysmography to assess ventilation.ResultsWe identified pathologic intrapulmonary shunting by bubble echocardiography as early as 2 weeks post-Glenn surgery, and shunting continued chronically at 2- and 6-months post-Glenn. Shunting also progressed over time, demonstrated by increased shunting of 10µm microspheres at 6 months. Shunting was accompanied by mildly decreased arterial oxygenation, but there were no differences in ventilation as quantified by plethysmography.ConclusionsOur surgical animal model of unilateral Glenn circulation re-creates the clinical condition of single ventricle PAVMs with early and progressive intrapulmonary shunting. This model is poised to characterize single ventricle PAVM pathophysiology and lead to mechanistic and therapeutic discovery.Graphic Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3