Extracellular Matrix Instability and Chronic Inflammation Underlie Maladaptive Right Ventricular Pressure Overload Remodeling and Failure in Male Mice

Author:

Russo Ilaria,Dun Wen,Mehta Swasti,Ahmed Sowda,Tzimas Christos,Fukuma Nobuaki,Tsai Emily J.ORCID

Abstract

ABSTRACTBackgroundRight ventricular dysfunction (RVD) portends increased death risk for heart failure (HF) and pulmonary arterial hypertension (PAH) patients, regardless of left ventricular function or etiology. In both, RVD arises from the chronic RV pressure overload, and represents advanced cardiopulmonary disease. RV remodeling responses and survival rates of HF and PAH patients, however, differ by sex. Men develop more severe RVD and die at younger ages than do women. Mechanistic details of this sexual dimorphism in RV remodeling are incompletely understood. We sought to elucidate the cardiac pathophysiology underlying the sex-specific RV remodeling phenotypes, RV failure (RVF) versus compensated RVD.MethodsWe subjected male (M-) and female (F-) adult mice to moderate pulmonary artery banding (PAB) for 9wks. Mice underwent serial echocardiography, cardiac MRI, RV pressure-volume loop recordings, histologic and molecular analyses.ResultsM-PAB developed severe RVD with RVF, increased RV collagen deposition and degradation, extracellular matrix (ECM) instability, and activation and recruitment of macrophages. Despite the same severity and chronicity of RV pressure overload, F-PAB had more stable ECM, lacked chronic inflammation, and developed mild RVD without RVF.ConclusionsECM destabilization and chronic activation of recruited macrophages are associated with maladaptive RV remodeling and RVF in male PAB mice. Adaptive RV remodeling of female PAB mice lacked these histopathologic changes. Our findings suggest that these two pathophysiologic processes likely contribute to the sexual dimorphism of RV pressure overload remodeling. Further mechanistic studies are needed to assess their pathogenic roles and potential as targets for RVD therapy and RVF prevention.CLINICAL PERSPECTIVEWhat is new?In a mouse model of pure PH, males but not females showed an association between ECM instability, chronic inflammation with activation of recruited macrophages, and severe RV dysfunction and failure.What are the clinical implications?In male HF and PH patients, enhancing ECM stability and countering the recruitment and activation of macrophages may help preserve RV function such that RVF can be prevented or delayed. Further preclinical mechanistic studies are needed to assess the therapeutic potential of such approaches.RESEARCH PERSPECTIVEWhat new question does this study raise? What question should be addressed next?What mechanisms regulate RV ECM stability and macrophage recruitment and activation in response to chronic RV pressure overload? Are these regulatory mechanisms dependent upon or independent of sex hormone signaling?

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3