Abstract
AbstractLyme disease is a tick-borne, multisystem infection caused by the spirochete,Borreliella burgdorferi. Although antibodies have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG (“B11”) against Outer surface protein C (OspC), a homodimeric lipoprotein necessary forB. burgdorferitick-mediated transmission and early-stage colonization of vertebrate hosts. High-resolution epitope mapping was accomplished through hydrogen deuterium exchange-mass spectrometry (HDX-MS) and X-ray crystallography. Structural analysis of B11 Fab-OspCAcomplexes revealed the B11 Fabs associated in a 1:1 stoichiometry with the lateral faces of OspCAhomodimers such that the antibodies are essentially positioned perpendicular to the spirochete’s outer surface. B11’s primary contacts reside within the membrane proximal regions of α-helices 1 and 6 and adjacent loops 5 and 6 in one OspCAmonomer. In addition, B11 spans the OspCAdimer interface, engaging opposing α-helix 1’, α-helix 2’, and loop 2-3’ in the second OspCAmonomer. The B11-OspCAstructure is reminiscent of the recently solved mouse transmission blocking monoclonal IgG B5 in complex with OspCA, indicating a mode of engagement with OspC that is conserved across species. In conclusion, we provide the first detailed insight into the interaction between a functional human antibody and an immunodominant Lyme disease antigen long considered an important vaccine target.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献