The genetic basis of tail-loss evolution in humans and apes

Author:

Xia BoORCID,Zhang WeiminORCID,Wudzinska Aleksandra,Huang EmilyORCID,Brosh RanORCID,Pour MaayanORCID,Miller AlexanderORCID,Dasen Jeremy S.,Maurano Matthew T.ORCID,Kim Sang Y.,Boeke Jef D.ORCID,Yanai ItaiORCID

Abstract

The loss of the tail is one of the main anatomical evolutionary changes to have occurred along the lineage leading to humans and to the “anthropomorphous apes”1,2. This morphological reprogramming in the ancestral hominoids has been long considered to have accommodated a characteristic style of locomotion and contributed to the evolution of bipedalism in humans3–5. Yet, the precise genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Primate genome sequencing projects have made possible the identification of causal links between genotypic and phenotypic changes6–8, and enable the search for hominoid-specific genetic elements controlling tail development9. Here, we present evidence that tail-loss evolution was mediated by the insertion of an individual Alu element into the genome of the hominoid ancestor. We demonstrate that this Alu element – inserted into an intron of the TBXT gene (also called T or Brachyury10–12) – pairs with a neighboring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated a mouse model that mimics the expression of human TBXT products by expressing both full-length and exon-skipped isoforms of the mouse TBXT ortholog. We found that mice with this genotype exhibit the complete absence of a tail or a shortened tail, supporting the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype, albeit with incomplete penetrance. We further noted that mice homozygous for the exon-skipped isoforms exhibited embryonic spinal cord malformations, resembling a neural tube defect condition, which affects ∼1/1000 human neonates13. We propose that selection for the loss of the tail along the hominoid lineage was associated with an adaptive cost of potential neural tube defects and that this ancient evolutionary trade-off may thus continue to affect human health today.

Publisher

Cold Spring Harbor Laboratory

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3