In silico cancer immunotherapy trials uncover the consequences of therapy-specific response patterns for clinical trial design and outcome

Author:

Creemers Jeroen H.A.ORCID,Roes Kit C.B.ORCID,Mehra NivenORCID,Figdor Carl G.ORCID,de Vries I. Jolanda M.ORCID,Textor JohannesORCID

Abstract

ABSTRACTBackgroundLate-stage cancer immunotherapy trials strive to demonstrate the clinical efficacy of novel immunotherapies, which is leading to exceptional responses and long-term survival in subsets of patients. To establish the clinical efficacy of an immunotherapy, it is critical to adjust the trial’s design to the expected immunotherapy-specific response patterns.MethodsIn silico cancer immunotherapy trials are virtual clinical trials that simulate the kinetics and outcome of immunotherapy depending on the type and treatment schedule. We used an ordinary differential equation model to simulate (1) cellular interactions within the tumor microenvironment, (2) translates these into disease courses in patients, and (3) assemble populations of virtual patients to simulate in silico late-stage immunotherapy, chemotherapy, or combination trials. We predict trial outcomes and investigate how therapy-specific response patterns affect the probability of their success.ResultsIn silico cancer immunotherapy trials reveal that immunotherapy-derived survival kinetics – such as delayed curve separation and plateauing curve of the treatment arm – arise naturally due to biological interactions in the tumor microenvironment. In silico clinical trials are capable of translating these biological interactions into survival kinetics. Considering four aspects of clinical trial design – sample size calculations, endpoint and randomization rate selection, and interim analysis planning – we illustrate that failing to consider such distinctive response patterns can significantly reduce the power of novel immunotherapy trials.ConclusionIn silico trials have three significant implications for immuno-oncology. First, they provide an economical approach to verify the robustness of biological assumptions underlying an immunotherapy trial and help to scrutinize its design. Second, the biological basis of these trials facilitates and encourages communication between biomedical researchers, doctors, and trialists. Third, its application as an educational tool can illustrate design principles to scientists in training, contributing to improved designs and higher success rates of future immunotherapy trials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3