PatchMAN docking: Modeling peptide-protein interactions in the context of the receptor surface

Author:

Khramushin AlisaORCID,Tsaban TomerORCID,Varga JuliaORCID,Avraham OrlyORCID,Schueler-Furman OraORCID

Abstract

AbstractPeptide docking can be perceived as a subproblem of protein-protein docking. However, due to the short length and flexible nature of peptides, many do not adopt one defined conformation prior to binding. Therefore, to tackle a peptide docking problem, not only the relative orientation between the two partners, but also the bound conformation of the peptide needs to be modeled. Traditional peptide-centered approaches use information about the peptide sequence to generate a representative conformer ensemble, which can then be rigid body docked to the receptor. Alternatively, one may look at this problem from the viewpoint of the receptor, namely that the protein surface defines the peptide bound conformation.We present PatchMAN (Patch-Motif AligNments), a novel peptide docking approach which uses structural motifs to map the receptor surface with backbone scaffolds extracted from protein structures. On a non-redundant set of protein-peptide complexes, starting from free receptor structures, PatchMAN successfully models and identifies near-native peptide-protein complexes in 62% / 81% within 2.5Å / 5Å RMSD, with corresponding sampling in 81% / 100% of the cases, outperforming other approaches. PatchMAN leverages the observation that structural units of peptides with their binding pocket can be found not only within interfaces, but also within monomers. We show that the conformation of the bound peptide is sampled based on the structural context of the receptor only, without taking into account any sequence information. Beyond peptide docking, this approach opens exciting new avenues to study principles of peptide-protein association, and to the design of new peptide binders.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3