Improved Peptide Docking with Privileged Knowledge Distillation using Deep Learning

Author:

Zhang ZicongORCID,Verburgt Jacob,Kagaya YukiORCID,Christoffer Charles,Kihara Daisuke

Abstract

AbstractProtein-peptide interactions play a key role in biological processes. Understanding the interactions that occur within a receptor-peptide complex can help in discovering and altering their biological functions. Various computational methods for modeling the structures of receptor-peptide complexes have been developed. Recently, accurate structure prediction enabled by deep learning methods has significantly advanced the field of structural biology. AlphaFold (AF) is among the top-performing structure prediction methods and has highly accurate structure modeling performance on single-chain targets. Shortly after the release of AlphaFold, AlphaFold-Multimer (AFM) was developed in a similar fashion as AF for prediction of protein complex structures. AFM has achieved competitive performance in modeling protein-peptide interactions compared to previous computational methods; however, still further improvement is needed. Here, we present DistPepFold, which improves protein-peptide complex docking using an AFM-based architecture through a privileged knowledge distillation approach. DistPepFold leverages a teacher model that uses native interaction information during training and transfers its knowledge to a student model through a teacher-student distillation process. We evaluated DistPepFold’s docking performance on two protein-peptide complex datasets and showed that DistPepFold outperforms AFM. Furthermore, we demonstrate that the student model was able to learn from the teacher model to make structural improvements based on AFM predictions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3