Compositional phylogenomic modelling resolves the ‘Zoraptera problem’: Zoraptera are sister to all other polyneopteran insects

Author:

Tihelka ErikORCID,Engel Michael S.,Lozano-Fernandez Jesus,Giacomelli Mattia,Yin Ziwei,Rota-Stabelli Omar,Huang Diying,Pisani Davide,Donoghue Philip C.J.ORCID,Cai Chenyang

Abstract

AbstractThe evolution of wings propelled insects to their present mega-diversity. However, interordinal relationships of early-diverging winged insects and the timescale of their evolution are difficult to resolve, in part due to uncertainties in the placement of the enigmatic and species-poor order Zoraptera. The ‘Zoraptera problem’ has remained a contentious issue in insect evolution since its discovery more than a century ago. This is a key issue because different placements of Zoraptera imply dramatically different scenarios of diversification and character evolution among polyneopteran. Here, we investigate the systematic placement of Zoraptera using the largest protein-coding gene dataset available to date, deploying methods to mitigate common sources of error in phylogenomic inference, and testing historically proposed hypotheses of zorapteran evolution. We recover Zoraptera as the earliest-diverging polyneopteran order, while earwigs (Dermaptera) and stoneflies (Plecoptera) form a monophyletic clade (Dermoplectopterida) sister to the remainder of Polyneoptera. The morphology and palaeobiology of stem-zorapterans are informed by Mesozoic fossils. The gut content and mouthparts of a male specimen of Zorotypus nascimbenei from Kachin amber (Cretaceous) reveal a fungivorous diet of Mesozoic zorapterans, akin to extant species. Based on a set of 42 justified fossil and stratigraphic calibrations, we recover a Devonian origin of winged insects and Polyneoptera, suggesting that these groups coincided with the rise of arborescence during the diversification of early terrestrial plants, fungi, and animals. Our results provide a robust framework for understanding the pattern and timescale of early winged insect diversification.

Publisher

Cold Spring Harbor Laboratory

Reference104 articles.

1. Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).

2. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects

3. Polyneoptera or “Lower Neoptera”-new light on old and difficult phylogenetic problems;Atti Accad. Naz. Ital. Entomol,2013

4. Phylogenomics resolves the timing and pattern of insect evolution

5. Progress, pitfalls and parallel universes: a history of insect phylogenetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3