The structural basis of huntingtin (Htt) fibril polymorphism, revealed by cryo-EM of exon 1 Htt fibrils

Author:

Nazarov SergeyORCID,Chiki Anass,Boudeffa Driss,Lashuel Hilal A.ORCID

Abstract

AbstractThe lack of detailed insight into the structure of aggregates formed by the huntingtin protein has hampered efforts to develop therapeutics and diagnostics targeting pathology formation in the brain of patients with Huntington’s disease. To address this knowledge gap, we investigated the structural properties of in vitro generated fibrils from exon1 of the huntingtin protein by electron cryo-microscopy and single-particle analysis. We show that wildtype and mutant exon1 of the huntingtin protein form non-helical fibrils with a polygultamine amyloid core composed of β-hairpins with unique characteristics that have not been previously observed with other amyloid filaments. The stacks of β-hairpins form long planar β- sheets (protofilaments) with variable stacking angle and occasional out-of-register state of individual β-hairpins. These features and the propensity of protofilament to undergo lateral association results in a high degree of fibril polymorphism, including fibrils composed of varying numbers of protofilaments. Our results also represent the first direct observation of how the flanking domains are organized around the polyglutamine core of the fibril and provide insight into how they might affect huntingtin fibril structure, polymorphism, and stacking of β-hairpins within its core structure. Removal of the first 17 amino acids at the N-terminus resulted in surprising intra-fibril structural heterogeneity and reduced fibril’s propensity to lateral associations. Overall, this work provides valuable insights that could guide future mechanistic studies to elucidate the sequence and structural determinants of huntingtin aggregation, as well as cryo-EM and structural studies of fibrils derived from huntingtin proteins and other disease-associated polyglutamine-containing proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3