Novel protein-altering variants associated with serum apolipoprotein and lipid levels

Author:

Sandholm NiinaORCID,Hotakainen RonjaORCID,Haukka Jani KORCID,Sigfrids Fanny JanssonORCID,Dahlström Emma HORCID,Antikainen AnniORCID,Valo ErkkaORCID,Syreeni AnnaORCID,Kilpeläinen Elina,Kytölä Anastasia,Palotie Aarno,Harjutsalo ValmaORCID,Forsblom CarolORCID,Groop Per-HenrikORCID

Abstract

AbstractDyslipidemia is a major risk factor for cardiovascular disease. While common genetic variants are known to modestly affect the serum lipid concentrations, rare genetic mutations can cause monogenic forms of hypercholesteremia and other genetic disorders of lipid metabolism. Aiming to identify low-frequency protein-altering variants (PAVs) affecting lipoprotein and lipid traits, we analyzed whole-exome and whole-genome sequencing data of 481 and 573 individuals with type 1 diabetes, respectively. The phenotypic data consisted of 97 serum lipid, apolipoprotein, or other metabolic phenotypes obtained with clinical laboratory measurements and nuclear magnetic resonance (NMR) technology. Single variant analysis identified a novel association between LIPC p.Thr405Met (rs113298164) and serum apolipoprotein-A1 levels (p=7.8×10−8). In the APOB gene, we identified novel associations at two protein-truncating variants (PTVs) resulting in lower serum apolipoprotein B levels (p=5.6×10−4). The burden of PAVs was significantly associated with lipid phenotypes in LIPC, RBM47, TRMT5, and GTF3C5 (p<2.9×10−6). The RBM47 gene is required for apolipoprotein-B post-translational modifications, and in our data, the association between RBM47 and apolipoprotein C-III levels was led by a rare 21 base pair Ala496-Ala502 deletion; as replication, the burden of rare deleterious variants in RBM47 was associated with TG-to-HDLC ratio in WES of 20,917 individuals (p=0.0093). Two PAVs in GTF3C5 were highly Finnish-enriched and associated with cardiovascular phenotypes in external data, whereby the TRMT5 p.Ser185Cys lead variant was associated with stroke phenotypes. Altogether, we identified both novel variant associations in known lipid genes, as well as novel genes implicated in lipoprotein metabolism.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3