Fast and robust non-negative matrix factorization for single-cell experiments

Author:

DeBruine Zachary J.ORCID,Melcher Karsten,Triche Timothy J.ORCID

Abstract

AbstractNon-negative matrix factorization (NMF) is an intuitively appealing method to extract additive combinations of measurements from noisy or complex data. NMF is applied broadly to text and image processing, time-series analysis, and genomics, where recent technological advances permit sequencing experiments to measure the representation of tens of thousands of features in millions of single cells. In these experiments, a count of zero for a given feature in a given cell may indicate either the absence of that feature or an insufficient read coverage to detect that feature (“dropout”). In contrast to spectral decompositions such as the Singular Value Decomposition (SVD), the strictly positive imputation of signal by NMF is an ideal fit for single-cell data with ambiguous zeroes. Nevertheless, most single-cell analysis pipelines apply SVD or Principal Component Analysis (PCA) on transformed counts because these implementations are fast while current NMF implementations are slow. To address this need, we present an accessible NMF implementation that is much faster than PCA and rivals the runtimes of state-of-the-art SVD. NMF models learned with our implementation from raw count matrices yield intuitive summaries of complex biological processes, capturing coordinated gene activity and enrichment of sample metadata. Our NMF implementation, available in the RcppML (Rcpp Machine Learning library) R package, improves upon current NMF implementations by introducing a scaling diagonal to enable convex L1 regularization for feature engineering, reproducible factor scalings, and symmetric factorizations. RcppML NMF easily handles sparse datasets with millions of samples, making NMF an attractive replacement for PCA in the analysis of single-cell experiments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3