The evolution of splicing: transcriptome complexity and transcript distances implemented in TranD

Author:

Nanni Adalena,Titus-McQuillan James,Moskalenko Oleksandr,Pardo-Palacios Francisco,Liu Zihao,Conesa Ana,Rogers Rebekah L.,McIntyre Lauren MORCID

Abstract

AbstractAlternative splicing contributes to organismal complexity. Comparing transcripts between and within species is an important first step toward understanding questions about how evolution of transcript structure changes between species and contributes to sub-functionalization. These questions are confounded with issues of data quality and availability. The recent explosion of affordable long read sequencing of mRNA has considerably widened the ability to study transcriptional variation in non-model species. In this work, we develop a computational framework that uses nucleotide resolution distance metrics to compare transcript models for structural phenotypes: total transcript length, intron retention, donor/acceptor site variation, alternative exon cassettes, alternative 5’/3’ UTRs are each scored qualitatively and quantitatively in terms of number of nucleotides. For a single annotation file, all differences among transcripts within a gene are summarized and transcriptome-level complexity metrics: number of variable nucleotides, unique exons per gene, exons per transcript, and transcripts per gene are calculated. To compare two transcriptomes on the same co-ordinates, a weighted total distance between pairs of transcripts for the same gene is calculated. The weight function proposed has larger penalties for intron retention and exon skipping than alternative donor/acceptor sites. Minimum distances can be used to identify both transcript pairs and transcripts missing structural elements in either of the two annotations. This enables a broad range of functionality from comparing sister species to comparing different methods of building and summarizing transcriptomes. Importantly, the philosophy here is to output metrics, enabling others to explore the nucleotide-level distance metrics. Single transcriptome annotation summaries and pairwise comparisons are implemented in a new tool, TranD, distributed as a PyPi package and in the open-source web-based Galaxy (www.galaxyproject.org) platform.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3